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A B S T R A C T   

Despite previous research efforts, there is a lack of experimental data on liquid circulation flow rates, particu-
larly in real-scale facilities. The study aims to fill this gap by proposing a momentum transfer model using a 
gas–liquid separation flow to estimate inner flow in a real-scale air-injection-type aerator. The liquid circulation 
flow rate was evaluated using velocity measurements. The air supply pressure and dissolved oxygen (DO) were 
determined. Experiments were performed at depths of 0.90, 1.30, and 1.75 m. The effect of the inner diffuser was 
investigated at each depth. The inner diffuser reduced the circulation flow rate but increased the vertical upward 
flow velocity. For the deepest condition (1.75 m), the inner diffuser reduced the air supply pressure and in-
creased the overall oxygen transfer coefficient. Momentum analysis indicated a suppression effect of the air 
velocity at the aerator exit owing to the inner diffuser. This indicated that an increase in the gas holdup owing to 
the deceleration of the air velocity at the aerator exit reduced the air supply pressure owing to the reduction in 
downstream pressure. This study provides valuable insights into aeration system optimization, considering 
factors such as energy efficiency and oxygen transfer effectiveness.   

1. Introduction 

Sufficient air supply and agitation are crucial in biological waste-
water treatment. Aerators are essential equipment in aerobic waste-
water treatment plants [1]. Aeration systems are also essential to other 
industrial processes, such as airlift reactors [2] and bubble curtains [3], 
significantly influencing performance. The use of aerators is expanding 
to environmental purification and protection technologies [4] and the 
mass cultivation of microalgae [5,6]. 

However, the energy consumption associated with aeration is typi-
cally high, estimated to account for 15–20% of the total operating costs 
of aerobic fermentation [2]. Extensive effort has been made to improve 
oxygen transfer efficiency in aerator development. A large interfacial 
area and low bubble-rising velocity positively impact oxygen transfer 
efficiency. Therefore, membrane units have been employed rather than 
coarse bubble-type diffusers in wastewater treatment plants [7]. 

Insufficient oxygen supply arises in scenarios involving high organic nu-
trient and large biochemical oxygen demand (BOD) loads, such as in food 
wastewater. Siddiqui et al. [8] indicated that inadequate aeration results in 
low treatment efficiency and increased costs. Sediment decomposition owing 
to eutrophication accelerates hypoxia near the bottom of the tank. Anaerobic 
conditions generate hydrogen sulfide (H2S) and malodorous gas [9–11]. 

To overcome these challenges, jet aerators have been developed 
to ensure sufficient oxygen supply. Agitation in a deep tank can be 
expected through momentum transfer from the strong air–liquid two- 
phase flow to the wastewater [12–16]. Compressed air or pumped 
liquid is vigorously mixed in the aerator and discharged into the 
tank. To develop an air-injection-type aerator, Iran et al. [17] eval-
uated the induced liquid flow through particle image velocimetry 
(PIV). Choi et al. [16] simulated agitation and fluid flow through 
computer fluid dynamics modeling. Burris and Little [18] and 
McGinnis and Little [19] compared the experimental oxygen transfer 
efficiency of an aerator with that of an analytical mass balance 
model. Recently, interest has been focused on the liquid circulation 
flow rate and gas holdup induced by air-injection-type aerators. An 
attempt to experimentally evaluate these values has been reported  
[20] for the airlift loop reactors, which has the downcomers. How-
ever, experimental data on liquid circulation flow rates remain lim-
ited, particularly in real-scale facilities for aerobic water treatment 
tanks because of the difficulty of evaluation. 

Attempts have been made to solve the momentum equation to 
predict the liquid circulation flow rate during airlift reactor develop-
ment. Liquid flow rate was determined from the motion of bubbles, 
defined by buoyancy and fluid drag after being released from the 
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sparger [3]. However, applying these results to apply to air-injection- 
type aerators is challenging because momentum transfer, denoting the 
acceleration of liquid, primarily occurs inside the device. 

Airlift pumps are similar in terms of vertical two-phase flow ex-
change momentum in the device. However, their air flow rate is gen-
erally lower than that of jet aerators, and their riser tube is thinner and 
longer. Thus, the flow pattern and gas holdup, based on the airlift pump 
theory, do not align with the range of the aerator [21]. 

The novelty of this study is the experimental evaluation of the liquid 
circulation flow rate induced by a full-scale air-injected aerator in the 
aeration tank. This study proposes a momentum transfer model using 
gas–liquid separation flow to estimate the inner flow in a real-scale air- 
injection-type aerator. The influence of the inner components (i.e., the 
diffuser) on the velocity and gas holdup was investigated by sub-
stituting the liquid circulation flow rate evaluated using the three-di-
mensional velocity into the model. Finally, the tested aerator was ap-
plied in actual wastewater treatment facilities as a case study. 

2. Nomenclature   

A Cross-sectional area [m2] 
C Oxygen concentration [mg/L] 
D Outer cylinder diameter [m] 
d Nozzle diameter [m] 
dPd Pressure loss at diffuser 
G Gap between floor and inlet of aerator [m] 
g Gravitational acceleration [m/s2] 
H Depth of liquid [m] 
Hd Liftoff height [m] (depth from water surface to aerator exit) 
J Interfacial area density [1/m] 
K Correction coefficient of outlet pressure [-] 
KLa Overall oxygen transfer coefficient [1/h] 
L Length of aerator [m] 
I Vertical distance from the nozzle to the aerator exit [m] 
M Momentum [kg m/s] 
P Pressure [Pa] 
Pm Measured air supply pressure [Pa] 
Q Flow rate [L/min] 
Re Reynolds number [-] 
S1 Drag coefficient [-] 
T Temperature [°C] 
u Velocity [m/s] 
Xtt Lockhart–Martinelli parameter  

Greek symbols 
Gas holdup [-] 
Aperture ratio [-] 
Liquid film thickness [m] 
Friction coefficient [-] 

µ Viscosity [Pa s] 
Density [kg/m3] 

i Interfacial shear stress [N/m2] 
w Wall shear stress [N/m2] 
l Two-phase frictional multiplier correlation 

Mass fraction of air  
Subscripts 

1 Section at the exit of the air nozzle 
2 Section at the aerator exit 
g Gas phase 
l Liquid phase 
r Radial coordinate 
s saturated 
z vertical coordinate 

Angular coordinate  

3. Materials and methods 

3.1. Experiment 

Fig. 1 shows the layout of the experimental facility. An aerator 
(Aience Co., Ltd., Aquablaster AL-750) was mounted on the bottom of 
an underground tank (2 m wide, 2 m deep, and 16 m long). The tank 
was kept open to the atmosphere. Air was supplied using a blower 

(Hitachi Co., Ltd., VB-022-G, maximum air flow rate of 1.2 m3/min) 
placed on the ground. 

Fig. 2 shows the dimensions of the aerator. Air was released verti-
cally upward from a nozzle with an inner diameter of d = 23 mm. The 
nozzle was housed in a 134 mm diameter (D) and 465 mm length (L) 
outer cylinder. The nozzle and outer cylinder were made of stainless 
steel. The distance between the nozzle and aerator exits was l
= 315 mm. The gap between the aerator inlet and bottom of the tank 
was G = 50 mm. The injected air and drawn water flowed upward 
while colliding with the diffusers along the outer cylinder. Three sets of 
two types of diffusers, as shown in Fig. 2(b), were alternately inserted, 
totaling six units. Although these diffusers cannot rotate, their blades 
were designed to create a swirling flow and enhance agitation in the 
tank [22]. 

Table 1 lists the experimental conditions, including the distance 
from the aerator exit to the liquid surface, called the liftoff height Hd. 
Three taped water depths were tested, referred to as CASE 1, 2, and 3. 
Two types of tests were performed for each case, with (A) and without 
(B) the inner diffusers, to investigate the influence of the inner diffusers. 

Air flow rate was measured using an ultrasonic flow meter (Aichi 
Tokei Denki Co., ltd., TRX50, measurement accuracy ±2%) installed on 
the horizontal pipe on the ground. Because the data Qg N, Nm3/min was 
obtained under normal flow conditions, the actual flow rate Qg m3/min 
was converted using the following equation: 

Q
P P

T Q101.33 · 273.15
273.15

· ,g
m

gN
0

=
+

+
(1) 

where Pm is the air supply pressure measured using a pressure gauge 
(SMC Co., Ltd., ISE80, accuracy ±2.5%) installed on the horizontal pipe 
on the ground, P0 is the base pressure (101.33 kPa), and T is the air 
temperature during the measurement. 

Three-dimensional velocity was measured using an electromagnetic 
flow meter (JFE Advantec Co. Ltd, ACM3-RS, accuracy ±0.005 m/s). 
The measurement point was positioned 40 mm above the bottom and at 
a 200 mm radial distance (rm) from the center of the aerator, as in-
dicated by the black circle in Fig. 1. 

In this study, the measurements of flow velocity and of dissolved 
oxygen (DO) were performed separately. The procedures of each were 
described below. At first, the procedure for velocity measurement was 
as follows: (i) The inverter-controlled blower was started from zero to 
the maximum frequency (60 Hz); (ii) Velocity was measured at the 
maximum air supply; (iii) The inverter frequency was reduced in 5 Hz 
or 10 Hz intervals, and velocity data were recorded after a waiting 
period of 3 min to achieve a steady state; (iv) These measurements were 
continued until the inverter frequency at which air supply was no 
longer possible. The instantaneous velocity values (ul r, , ul, , ul z, ) were 
obtained at a 20 Hz sampling frequency over a 15 min duration. The 

Fig. 1. Experimental facility.  
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circular liquid flow rate was calculated using the following equation: 

Q r G u2 · · · ,l m l r,= (2) 

substituting the averaged value in the radial direction calculated for 
16384 (=214) data points into ul r, . 

The DO measurements were performed on a different day from the 
velocity measurements to reduce the oxygen level in the tank. Two DO 
sensors (Iijima Electronics Co. Ltd., ID-150, accuracy ±0.1 mg/l) were 
installed near the side wall of the tank at the depths shown in Table 1. 
To measure the DO, the inverter frequency was raised from 0 Hz to 
50 Hz rapidly. Time-series changes in the DO were recorded without 
waiting time. During data acquisition, the inverter frequency was fixed 
at 50 Hz. The overall oxygen transfer coefficient was calculated using 
the following equation: 

K a
t t

ln
,L

C C
C C

2 1

s
s

1
2=

(3) 

where Cs is the saturation oxygen concentration at system temperature, 
and C1 and C2 are the DO values at times t1 and t2, respectively. The 
volume-weighted average values of the outputs of the two DO sensors 
were substituted into C1 and C2. The standard oxygen transfer coeffi-
cient at 20 °C was converted using the following equation: 

K K · ,La La T
T

(20)
(20 )= (4) 

where T = 19.7–21.7 °C, and T = 1.024. 
For the value of velocity, liquid circulation flow rate and pressure, the 

standard deviation of fluctuations within the measurement time interval 
were displayed as an error bar in Figs. 4 and 5. For KLa (20), the influences of 
accuracy of DO sensor (±0.1 mg/l) were shown by error bars in Fig. 7. 

3.2. Analysis model 

The injected air was assumed to rise to the center of the outer cy-
linder in a continuous phase because large bubbles were observed near 
the outlet of the aerator (see supplementary video). A separated flow 
model in an annular air–liquid two-phase flow was employed as shown 
in Fig. 3. The mass and momentum balance in the steady state between  
Sections 1 and 2 without a phase exchange is described as follows: 

A u A u 0,g g z g g z2 , 2 1 , 1 = (5)  

A u A u(1 ) (1 ) 0,l l z l l z2 , 2 1 , 2 = (6)  

dM A dP gA dz r dz A dP2 ,g g g g i i g d= (7)  

Fig. 2. (a) Dimensions of aerator and (b) photographs of inner diffuser.  

Table 1 
Experimental condition.         

H [m] diffuser Hd [mm] DO-1 
[m] 

DO-2 
[m]  

CASE 1 A  0.90 Included  385  0.00  0.60 
CASE 1B  0.90 Not included  385  0.00  0.60 
CASE 2 A  1.30 Included  785  0.00  1.00 
CASE 2B  1.30 Not included  785  0.00  1.00 
CASE 3 A  1.75 Included  1235  0.75  1.50 
CASE 3B  1.75 Not included  1235  0.00  1.50 

Fig. 3. Control volume for analysis of vertical upward two-phase annular flow.  
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dM A dP gA dz r dz r dz A dP2 2 ,l l l l i i w w l d= + (8) 

where is the gas holdup, dP is the pressure gradient, ri is the distance 
from the center of the aerator to the air–liquid interface, rw (67 mm) is 
the outer cylinder radius, and dPd is the pressure loss induced by the 
inner diffuser. The momentum variations, Md g and Md l, are expressed 
as follows: 

dM A u A u ,g g g z g g z2 , 2
2

1 , 1
2= (9)  

dM A u A u(1 ) (1 ) .l l l z l l z2 , 2
2

1 , 1
2= (10)  

Because only the liquid phase is in contact with the wall, the wall 
shear stress is determined as follows: 

u
2

.w
l

l l z,
2= (11)  

The friction loss coefficient l is calculated by substituting the liquid 
velocity at the aerator outlet into the Blasius equation; 

0.0791 Re ,l
1/4= (12)  

u D
Re

·
.l z

l

, 2=
(13)  

The two-phase frictional multiplier l is proposed for estimating the 
pressure drop. When the single-phase pressure drop for the liquid, and 
the two-phase pressure drops are described as dp dz( / )l and dp dz( / )F
respectively, the following relationship is obtained: 

dP
dz

dP
dz

.
F

l
l

2=
(14)  

l
2 is calculated using the Chisholm–Laird equation for turbulent 

flow in a smooth pipe [23] as follows: 

X X
1 21 1 ,l

tt tt

2
2= + +

(15) 

where Xtt is the Lockhart–Martinelli parameter for turbulent flow, ex-
pressed as 

X x
x

µ
µ

1 .tt
g

l

g

l

0.9 0.5 0.1

=
(16)  

x is the mass fraction of the gas phase, denoted as quality 
x /{ (1 )}g g l= + . Using the above equations, the wall friction 
term in Eq. (8) was calculated as r dz r l2 2 · ·w w w w l

2= . 
Interfacial shear stress can be evaluated using Wallis’s equation [24] 

for turbulent flow, expressed as 

u u
2

( ) ,i
i

g g zm i,
2= (17)  

D
1 300 5

Re
2 ,i g

g g
= +

(18) 

where ug zm, and ui are the average gas and interfacial velocities, re-
spectively. In this study, these velocities are denoted by ug z, 2 and ul z, 2, 
respectively. The friction loss coefficient g in gas was evaluated using  
Eqs. (12) and (13) by substituting ug z, 2 with ul z, 2. The average thickness 
of liquid film is calculated as D (1 )/22= , assuming that the gas 
phase has a cylindrical shape, and its gas holdup can be represented by 

2. In the absence of waves and entrainment at the gas–liquid interface, 
the interfacial area density J , defined as the interfacial area per unit 
volume, can be expressed as 

J
D

4
.2= (19)  

Therefore, the interfacial friction term in Eqs. (7) and (8) was de-
termined as r dz2 i i = J D l· · · /4i

2 . 

The pressure loss Pd d induced by the inner diffuser was assumed to 
be approximated by the pressure loss for a perforated plate. 

P u Sd 1
2

,d
2

1= (20)  

S {0.707(1 ) 1 } ,1
3/8 2

2= +
(21) 

where is the aperture ratio [25]. In this study, these values are 
= 0.357 for the wing-type diffuser, as shown in the bottom of Fig. 2(b), 
and = 0.487 for the needle-type diffuser, as shown in the top of  
Fig. 2(b). The values at Section 2 were used for the gas and liquid ve-
locity and gas holdup for evaluating dPd. 

Finally, the pressures in Sections 1 and 2 were assessed. The pres-
sure at nozzle exit P1 was calculated from Pm by considering the cu-
mulative friction loss along the pipe and the local pressure losses due to 
the elbows and reducers. p2 represents the pressure head, expressed as 
P gHm d2 = , where (1 )m g l2 2= + is the mixed density. Because 
the discharged bubbles would expand or spread before reaching the 
liquid surface of the tank, the actual pressure acting on the aerator exit 
differs from p2. Subsequently, a factor K was introduced into the mo-
mentum balance analysis. In Eqs. (7) and (8), the pressure gradient was 
assumed as dP = P K P·1 2 = P K gH· m d1 . 

Because the gas holdup at nozzle exit was constant 1= 0.0295 in this 
experiment, four variables, ug2, ul2, 2, and K , were considered in solving  
Eqs. (5)–(8). Eqs. (5)–(21) were translated into a Microsoft Excel worksheet. 
A solution was obtained using the generalized reduced gradient (GRG) 
nonlinear solution method by substituting the measured Qg and Ql. Con-
vergence was considered achieved when the residual of the difference be-
tween the right and left hand sides decreased to 1×10−6. 

4. Results and discussion 

4.1. Liquid circulation flow rate and velocity 

Fig. 4(a) shows the liquid circulation flow rate Ql, calculated from 
the average velocity ul r, in the radial direction. The horizontal axis re-
presents the measured air flow rate Qg at each tested inverter frequency. 

The liquid circulation flow rate increased with the depth H . 
Compared with Qg ∼ 1000 L/min, Ql = 518 L/min in Case 3B was 
larger than Ql = 495 L/min in Case 2B or Ql = 359 L/min in Case 1B. 
When the depth of the tank decreased, the influence of waves on the 
agitation of the liquid became apparent. The momentum transfer from 
the bubble to the liquid decreased owing to the short liftoff height Hd. 

The inner diffuser reduced the liquid flow rate in all cases according 
to the local pressure drop. However, the maximum values of Qg on the 
horizontal axis (i.e., at the maximum inverter frequency) in Cases 2 A 
and 3 A were greater than those in Cases 2B and 3B, in which the inner 
diffuser was not installed. The strict mechanism of the change in Qg
could not be explained. Nonetheless, the influence of the inner diffuser 
on the air supply pressure and injection rate is discussed in Section 3.3 
based on the results of the momentum analysis. 

Fig. 4(b) shows the average velocities in ul z, . A vertical upward flow 
is crucial for preventing sediment growth at the bottom of the aeration 
tank. The values of ul z, increased when the inner diffuser was installed. 
In particular, a strong vertical flow occurred for Qg >  1000 L/min in 
Cases 2 A and 3 A. Because the flow is no longer parallel to the bottom, 
the value of Ql may be underestimated under these conditions. For in-
stance, ul r, and ul z, were 0.055 and 0.029 m/s, respectively for Qg
= 1356 L/min in Case 3 A. Consequently, the flow angle with respect to 
the bottom was estimated to be tan (0.029/0.055)1 = 28 deg. 

The influence of the inner diffuser on the circumferential velocity 
ul, , as shown in Fig. 4(c), is similar to that of Ql. Thus, the diffuser 
reduced the velocity in the suction and circumferential directions and 
increased the velocity in the vertical direction. 
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Fig. 4. Variation of Ql, ul z, and ul, with Qg.  

Fig. 5. Pressure in air supply pipe.  
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The air supply pressure Pm shown in Fig. 5 in this experiment was 
lower than that of the membrane-type aerator (for example, 30 kPa for 
Qg =13 L/min on Rizzardi’s experiment [7]). The inner diffuser had 
relatively little effect on Pm in Cases 1 and 2. However, in Case 3, the 
pressure decreased when an inner diffuser was installed. Based on the 
results of the momentum analysis, as discussed in Section 3.3, one of 
the potential causes is a lower back pressure owing to a higher gas 
holdup after discharge from the nozzle. 

4.2. Oxygen transfer 

Fig. 6 presents the time-series data of oxygen deficits 
( C Cln ( )s ). The inner diffuser affected the variation in C Cln ( )s
after 0.005 hr−1 in Case 1 and 0.007 hr−1 in Case 3. Fig. 7 shows the 
values of KLa (20), calculated by substituting the slope of C Cln ( )s into  
Eq. (3). Notably, the KLa (20) values of the aerator in this study were 
larger than those of a venturi-type aerator (KLa (20) = 12.8 h−1 at Ql
= 216 L/min) evaluated by Dong et al. [12]. 

In cases where the diffuser was not installed (i.e., Cases 1B, 2B, and 3B), 
KLa (20) decreased with increasing depth. This trend is consistent with that 
observed by Wagner and Pöpel [26] and Gillot et al. [27]. In Cases 1 A, 2 A, 
and 3 A, the inner diffuser mitigated the variation in KLa (20) with H . Thus, 
the difference between Cases 1 A and 3 A was smaller than that between 
Cases 1B and 3B. In particular, the value of KLa (20) in the deepest condition 
(Case 3 A) exceeded that of Case 3B. The change in agitation caused by the 
inner diffuser affected the KLa (20) value. 

4.3. Analysis of momentum balance 

The solution to Eqs. (5)–(8) can be obtained except for the minimum 
Ql conditions in Cases 1 A, 3 A, and 3 B. Under these conditions, the 

momentum transfer after exiting the aerator (i.e., between the liftoff 
heights) was considered to be greater than that of other conditions.  
Fig. 8 shows the obtained solutions corresponding to the measured (Qg, 
Ql) values. 

Fig. 8(a) shows the predicted gas holdup 2 at the aerator exit. The 
2 values were larger than the inlet gas holdup of 1=0.00295 and in-

creased with Qg. The reduction in the air velocity from ug z, 1 to ug z, 2
owing to the frictional and interfacial shear stress in the aerator in-
creased the cross-sectional area of air phase A· 2 in Eq. (5) and the 2
values. 

The triangular symbols in Fig. 8(a) represent the predicted values of 
air velocity ug z, 2 at the aerator exit. In the cases with the inner diffuser 
installed, as shown by the white triangles, ug z, 2 became lower than the 
black symbols. Because ug z, 1 at the nozzle exit was nearly the same for a 
similar Qg between white and black, the local pressure drop at the inner 
diffuser enhanced the air-phase deceleration. 

The air phase diameter at the aerator exit can be evaluated by D 2 . 
The value of ug z, 2 and D 2 provide an outline of released bubble 
property. However, it is difficult to address the tendency of KLa (20) from 
these values because the influences of the breakup or the dispersion of 
air bubble after exiting the aerator was not included in this analysis. 

The correction coefficients of pressure K were nearly 1 for Cases 
2B and 3B. However, the K values for Cases 2 A and 3 A were less 
than 1. The large gas holdup reduced the pressure head K gH· m d. 
The momentum balance substituting measured Qg and Ql induced 
that the mixed density of gas-liquid fluid between the liftoff height 
Hd would less than the value of m at the aerator exit for Case 2 A 
and 3 A. The reason is considered to be the deceleration of air 
bubble because of the breakup by the effect of diffuser. This may 
have caused the lower air supply pressure in Case 3 A compared 
with that in Case 3 B, as shown in Fig. 5. Moreover, the reduction in 
K gH· m d may have also increased the maximum Qg in Cases 2 A and 
3 A, as shown in Fig. 4, owing to a reduced air nozzle back pressure. 
These prospects will be supported by the pressure measurements at 
the aerator exit in the future. And the present analytical results 
include errors due to neglecting the momentum transfer between 
the liftoff heights. Incorporating a model for this section would 
reduce the error, especially for low Ql conditions. 

4.4. Case study 

A cut vegetable manufacturing plant in Iwate Prefecture, Japan, has 
a private wastewater treatment facility with seven 31.5 m3 primary 
aeration tanks. An overview of these facilities is provided in the  
Supplementary Information. The average flow is 300 m3/d (0.08 mgd). 
A total of 35 units, five units in each tank, of the aerator in this study 
(AL-750, inner diffuser included) were installed. For preaeration, 31 
small-sized aerators (AS-250, 68 mm in diameter and 176 mm in 
height) were installed in the 101.3 m3 flow-control tank upstream of the 
primary tanks. The facility also has a 40.3 m3 sedimentation tank 
downstream of the primary tanks. The air flow rate is 3.75 m3/min for 

Fig. 6. Variation of oxygen deficit.  

Fig. 7. KLa (20) [1/h].  
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each aeration tank and 7.75 m3/min for the flow-control tank. Table 2 
lists the wastewater characteristics, all of which meet the Japanese 
effluent standards. 

The next facility treats kitchen wastewater (60 m3/d (0.02 mgd) 
from food and dish washing in the cafeteria of a measurement hardware 
manufacturing factory in Kanagawa Prefecture, Japan. Twenty-five AL- 
750 are installed in five aeration tanks, each with a capacity of 23.8 m3. 
A small 6th aeration tank (10 m3), a sedimentation tank (7.8 m3), and 
an effluent flow-control tank (4.0 m3) are installed downstream of the 
five aeration tanks. Two AL-750 units and five AS-250 units are in-
stalled in the 6th aeration tank and effluent flow-control tanks, re-
spectively. The total air flow rate supplied to the 1st to 3rd aeration 
tanks is controlled at 13.5 m3/min. The total air flow rate supplied to 
the 4th to 6th aeration tanks and effluent flow-control tank is 12.3 m3/ 
min. 

Table 3 summarizes the results. In the previous equipment, organic 
fats and oils treatment was incomplete, generating foul odors. After 
installing the AL-750 units, the residues of the organic material were 
reduced, and odors were resolved. The sludge disposal interval was 
drastically extended. 

5. Conclusions 

This study investigated the influence of the inner diffuser in-
corporated in an air-injection-type aerator across three aeration tank 
depths. The results limited for a range of the experimental conditions 
and the model of aerator was concluded as below. 

The inner diffuser reduced the liquid circulation flow rate up to 
49%. However, the vertical component of velocity increased when the 
diffuser was installed. The maximum increase in vertical velocity was 
achieved in Case 1 A, which was 75 times greater than that of Case 1B. 
Under the deepest condition (Case 3 A), the inner diffuser reduced the 
air supply pressure up to 13%. 

Fig. 8. Prediction of 2, ug,2 and K .  

Table 2 
Wastewater characteristics on the cut vegetable manufacturing plant. Unit: [mg/l].          

BOD COD SS n-hex T-N T-P  

Influent 920 830 960 8.7 100 14 
Effluent 7.0 22 7 1 4.8 0.5 
Effluent standards 160 160 200 5 120 16 

BOD = biochemical oxygen demand. 
COD = chemical oxygen demand. 
SS = suspended solids. 
n-hex = normal hexane 
T-N = total nitrogen 
T-P = total phosphorous  

Table 3 
Wastewater characteristics on kitchen of cafeteria of manufacturing factory. 
Unit: [mg/l].        

BOD COD SS n-hex  

Influent 1000 500 1200 400 
Effluent 40 40 50  <  1.0 
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For oxygen transfer, the presence of an inner diffuser reduced the 
sensitivity of KLa (20) to depth. KLa (20) in Case 3 A was 1.4 times greater 
than that in Case 3 B, where the diffuser was not included. 

The air velocity and pressure at the aerator exit were evaluated by 
substituting the measured Qg and Ql values into the momentum balance 
equation for annular two-phase flow. The local pressure drop in the inner 
diffuser reduced the air velocity and increased the gas holdup at the aerator 
exit. A higher gas holdup may reduce the air supply pressure. 

This study provides valuable insights into the design and optimi-
zation of air-injection-type aerators. The potential benefits include the 
reduction in liquid circulation flow rate, improved oxygen transfer ef-
ficiency, and energy optimization through careful consideration of 
inner diffuser characteristics. 
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